Math 210 Quiz # 2, April 26, 2010

- 1. Let $f:[a,b]\to\mathbb{R}$ be a continuous function. State, without proof, four properties of f. Do not supply proofs, just give clear and precise statements of those properties.
- 2. Let $f:[a,b] \to \mathbb{R}$ and $x \in [a,b]$. If f is continuous at the point x, and $f(x) \neq 0$, prove that $\frac{1}{f}$ is continuous at x. Give an $\epsilon \delta$ proof. If you need a property of f related to those properties in problem 1, state that property clearly, but do not prove it.
 - 3. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \left\{ \begin{array}{cc} x^2 \sin \frac{5}{x} & x \neq 0 \\ 0 & x = 0 \end{array} \right\}.$$

- (a) Prove that f is differentiable everywhere on \mathbb{R} and compute f'(x) for each $x \in \mathbb{R}$.
 - (b) Prove that f' is bounded on \mathbb{R} . (c) Prove that f' is not continuous at 0.
 - 4. Prove the inequality

$$e^x < \frac{2+x}{2-x} 0 < x < 2.$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function, and suppose that there is a constant A < 1 such that $|f'(t)| \leq A$ for all real t. Let $x_0 \in \mathbb{R}$, and define a sequence $\{x_n\}$ by

$$x_{n+1} = \frac{2x_n + 3f(x_n)}{5}, n = 0, 1, 2, \cdots$$

Prove that the sequence $\{x_n\}$ is convergent, and that its limit is the unique fixed point of f.

6. Suppose (a) f is continuous on $[0,\infty)$; (b) differentiable on $(0,\infty)$; (c) f(0) = 0; (d) f' is monotonically increasing. Put $g(x) = \frac{f(x) - 3\sqrt{x}}{x}$, x > 0, and prove that g is monotonically increasing.